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1. Introduction

The giant magnons [1] are solitons on the string world-sheet in AdS5×S5 and are argued to

be the fundamental building blocks of the spectrum in the AdS/CFT correspondence. One

of the remarkable features of giant magnons is periodicity of their momentum, which has

a geometric origin [1]. This periodicity is quite puzzling since the centre of mass of a giant

magnon, the collective coordinate canonically conjugate to the momentum, should then be

quantized, pointing perhaps to some underlying lattice structure in the sigma model on

AdS5 × S5. The semiclassical quantization of the giant magnon was carried out in [2 – 6].

The purpose of this paper is to go beyond the semiclassical approximation, albeit not in

string theory in AdS5 ×S5. The prime example will be the O(N) sigma-model, which also

admits giant magnons as classical solutions. Following [7], we will identify quantum giant

magnons in the O(N) model with the holes in the Fermi sea of the fundamental vector

particles. The Fermi sea arises in the exact Bethe-Ansatz solution of the model [8 – 11].

The analogy with [7] is possible because the solitons of the non-linear Schrödinger

(NLS) equation considered there have much in common with giant magnons. Both are

particular examples of dark solitons [12]. A dark soliton can be pictured as a dark spot

moving through a bright medium (hence the name) or, more appropriately in the present

context, as a localized dilution of the Bose-Einstein condensate. It is characterized by two

conditions: (i) finite background density: φ → φ e−iµt, 〈φ〉 6= 0 (φ is the field that carries
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the condensed charge, µ is the chemical potential);1 and (ii) twisted boundary conditions:

φ(+∞, t) = e i∆ϕφ(−∞, t). In other words, the phase of φ experiences a finite increment

as one crosses the soliton, and the modulus of φ has a dip in the soliton’s core.

We will consider giant magnon solutions (which belong to the class of dark solitons

described above) in the O(N) sigma model:

S =
N

2λ

∫

d2x ∂νn · ∂νn, (1.1)

where n is an N -dimensional unit vector. The giant magnon is a soliton on S2, which in

terms of the charged field φ = sinϑ e iϕ, where n = (sinϑ cosϕ, sinϑ sinϕ, cos ϑ,0), has the

form [1]

φ = e−iµt

(

v − i
√

1 − v2 tanh
µ(x− vt)√

1 − v2

)

. (1.2)

The solution obviously satisfies the above conditions (i) and (ii).

The giant magnon solution is strikingly similar to the dark soliton [13, 14]

φ =
1

2
√
g

[

v − i
√

2µ− v2 tanh

√

2µ− v2(x− vt)

2

]

(1.3)

of the NLS model:2

SNLS =

∫

dt dx
(

iφ∗φ̇− |φ́| − g|φ|4 + µ|φ|2
)

. (1.4)

An apparent difference between the the giant magnon and the NLS soliton is that the

size of the latter can be arbitrary large and actually becomes infinite at v2 = 2µ, while

the size of the giant magnon depends on the velocity only through the trivial Lorentz-

contraction factor and is always smaller than 1/µ. We will see in section 2 that this is an

artifact of the classical approximation. The quantum giant magnon also has a variable,

velocity-dependent size which turns to infinity when soliton moves at the speed of sound.

In the framework of Bethe Ansatz the ground state of the quantum NLS model at

non-zero chemical potential is represented by a Fermi sea of interacting particles [15], 1d

bosons with a local repulsive interaction for which (1.4) is the second-quantized action.

Because of the repulsion particles in some sense obey the Fermi statistics. The spectrum

of elementary excitations has two branches, the particles and the holes. At weak coupling

(g ≪ √
µ) the spectral properties of the hole excitations precisely match those of the

classical solution (1.3), which is why the holes, at arbitrary coupling, can be interpreted

as quantum dark solitons [7]. The particle branch of the spectrum interpolates between

sound waves and bosonic single-particle excitations and at g ≪ √
µ is described by the

Bogolyubov theory of a weakly interacting Bose gas [16, 17].

The relationship between dark solitons and holes in the Fermi sea essentially follows [7,

18] from the spectral properties of the Lax operator in the finite-density case [19]: the

1More precisely, this condition states that the field has the form 〈φ〉 e −iµt asymptotically at spacial

infinity.
2The time-dependent phase in φ here is traded for the chemical potential in the Lagrangian.
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spectrum of the auxiliary linear problem has a gap, which is the semiclassical counterpart

of the Fermi sea in quantum theory. The dark solitons (1.3) correspond to normalizable

eigenstates inside the gap and thus represent holes. The spectral density has a characteristic

square-root behavior at the edges of the spectral gap. There are many instances where

Bethe Ansatz reduces to singular integral equations of the matrix model type and its

solutions exhibit similar square-root behavior. This happens, for example, at large N [20,

21], in the semiclassical approximation [22 – 24] or in the conformal limit [25 – 28]. We will

demonstrate that Bethe equations also reduce to singular integral equations when they

describe weakly interacting Bose gas. This limit of Bethe Ansatz (which we will call the

Bogolyubov limit) is ubiquitous in integrable systems, and does not necessarily coincide

with the classical approximation.

In particular, the large-N limit of the O(N) model, in which quantum fluctuations are

definitely important, falls into the category described above. Building upon this observation

we will argue that quantum giant magnons should be identified with the holes in the Fermi

sea. We will first construct the large-N counterpart of the classical solution (1.2) in section 2

and then compare it with the large-N limit of Bethe Ansatz in section 3. In section 4 we

study the limit of small anisotropy in the XXZ spin chain which also turns out to be of the

Bogolyubov type.

2. Giant magnons at large N

2.1 O(N) model at finite density

In order to induce a finite density of one of the O(N) charges Qij (i, j = 1 . . . N) one can

couple (1.1) to a chemical potential by shifting the Hamiltonian H → H − µijQij/2. This

is equivalent to gauging the O(N) symmetry by a constant A0 and amounts to replacing

∂0 by a covariant derivative Dij
0 = ∂0δ

ij + µij in the action. In the AdS/CFT context the

finite density of the O(6) charge corresponds to an infinite angular momentum uniformly

distributed along the string.3 TheN/2 independent Cartan charges4 are carried by complex

linear combinations

zI =
n2I−1 + in2I√

2
, I = 1 . . . N/2. (2.1)

Introducing a Lagrange multiplier σ that enforces the condition z∗IzI = 1/2, we can

put (1.1) into the unconstrained form:

S =
N

λ

∫

d2x





N/2
∑

I=1

(

|DνzI |2 − σ|zI |2
)

+
1

2
σ



 , D0zI = ∂0zI − iµIzI . (2.2)

In principle all µI ’s are independent variables, and one can consider various combinations

of the chemical potentials which give different background charges. We will be interested

3See [29] for a recent discussion of the canonical vs. microcanonical description of charged states in the

AdS string theory
4For simplicity we assume that N is even. This assumption is not essential in the large-N limit.
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in the simplest case when only one chemical potential µ ≡ µ1 is non-zero and the rest

µI = 0. For the field that carries the background charge we will use a special notation:5

φ ≡ 1√
λ
z1. (2.3)

The large-N limit of the O(N) model can be solved by standard methods [30]. Inte-

grating out zI ’s generates an effective action for σ, which has a minimum at a non-zero

vev: 〈σ〉|µ=0 = m2. The vev of σ gives equal masses to all zI fields and is determined by

the gap equation:
1

λ
= 〈x| i

−∂2 −m2
|x〉 . (2.4)

When the chemical potential is turned on it is convenient to leave the charged field φ

unintegrated:

Seff = N

∫

d2x

[

|∂νφ|2 + iµ (φ∗∂0φ− φ∂0φ
∗) + (µ2 − σ)|φ|2 +

1

2λ
σ

]

+
i(N − 2)

2
ln det

(

−∂2 − σ
)

. (2.5)

At large N the tree approximation for this effective action becomes exact and one can

expand around the minimum of the effective potential. If µ > m, the setting is the same as

in the Bogolyubov theory: The zero mode of φ Bose condenses, with the physical ground

state at

〈σ〉 = µ2, 〈φ〉2 =
1

4π
ln
µ

m
. (2.6)

These equations are obtained by minimizing the effective action (2.5) in φ and σ and taking

into account the dimensional transmutation formula (2.4). The value of the action at the

minimum determines the density of the free energy:

E =
Evac

Vol
= −Nµ

2

8π

(

2 ln
µ

m
− 1

)

. (2.7)

The fluctuations of φ around the ground state (the Bogolyubov branch of the spectrum)

interpolate between phonons with ε = csp, at p≪ µ ln(µ/m), and single-particle excitations

with ε = p, at p ≫ max{µ ln(µ/m), µ}. The speed of sound can be found by integrating

out σ in (2.5) and linearizing the resulting equations of motion for φ:

c2s =
ln µ

m

ln µ
m + 1

. (2.8)

Alternatively, the same result can be obtained from the thermodynamic relation c2s =

µ−1(∂E/∂µ)/(∂2E/∂µ2). In addition to sound waves, the field φ describes a massive mode

separated from the ground state by the gap M2 = 8µ2 ln(µ/m). The neutral modes have

a common mass equal to µ.

5This is the same φ as in (1.2).
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2.2 Solitons

We now turn to the soliton sector of the large-N effective theory (2.5). The effective

action (2.5) and the ensuing equations of motion are non-local:6

|φ|2 =
1

2
〈x|

(

i

−∂2 −m2
− i

−∂2 − σ

)

|x〉 (2.9)

−∂2φ+ 2iµ ∂0φ+ (µ2 − σ)φ = 0.

Similar equations arise in a variety of large-N field theories and in spite of their non-locality

are solvable in some cases [31 – 33], which presumably reflects complete integrability of the

underlying models. The O(N) model is integrable as well and we will be able to construct

the exact giant magnon solution of (2.9) by using a method [34 – 36, 33] based on the

Gelfand-Dikĭi identities [37] for the diagonal resolvent of the Sturm-Liouville operator:

R [x;V (x)] = 〈x| 1

− d2

dx2 + V
|x〉 . (2.10)

With the help of the differential equation satisfied by the diagonal resolvent [37] one can

prove the following remarkable identity:

R

[

x;ω2 − 2ν2

cosh2 νx

]

=
1

2ω
+

ν2

2ω (ω2 − ν2) cosh2 νx
. (2.11)

Since the giant magnon is a traveling dispersionless wave, it is convenient to perform

a Lorentz transformation to its rest frame:7

x =
x1 − vx0

√
1 − v2

, t =
x0 − vx1

√
1 − v2

. (2.12)

and to look for solutions independent of t: σ ≡ σ(x), φ ≡ φ(x). After the Fourier transform

in t, (2.9) become:

|φ(x)|2 =

∫ +∞

−∞

dω

4π

(

R
[

x;ω2 +m2
]

−R
[

x, ω2 + σ
])

´́
φ− 2iµv√

1 − v2
φ́+ (µ2 − σ)φ = 0. (2.13)

The identity (2.11) and the form of the classical Hoffman-Maldacena solution (1.2) suggest

the following ansatz:

σ = µ2 − 2ν2

cosh2 νx

φ =

(

1

4π
ln
µ

m

)1/2 µv − iν
√

1 − v2 tanh νx
√

ν2 + (µ2 − ν2)v2
. (2.14)

It is straightforward to check that the ansatz goes through the equations of motion (2.13),

6Here we used (2.4) to eliminate the cutoff dependence and to trade the bare coupling for the physical

mass.
7In the presence of the background charge density the Lorentz invariance is spontaneously broken, so

this transformation does not leave the equations of motion invariant.
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Figure 1: The inverse size of the giant magnon as a function of the velocity, at ln(µ/m) = 1. The

angle α is defined in (2.15)

provided that the ratio
ν

µ
≡ sinα (2.15)

satisfies

α
(

tanα+ v2 cotα
)

=
(

1 − v2
)

ln
µ

m
. (2.16)

The last equation determines α, and hence ν, the inverse size of the soliton, as a

function of its velocity. The function α(v) is plotted in figure 1. It reaches its maximum

at v = 0 and then monotonously decreases with the increase of v. In contradistinction to

their classical counterparts, the large-N giant magnons cannot move faster than sound:8

when v approaches cs, defined in (2.8), α goes to zero. The soliton becomes larger and

larger and completely dissociates when v = cs.

In the weak-coupling limit, µ≫ m, the large-N solution (2.14)–(2.16) goes over to the

classical giant magnon (1.2), because then α ≈ π/2 (unless the velocity is very close to

the speed of sound) and consequently ν ≈ µ. An overall logarithmic factor in (2.14) arises

because of the different normalization of the field φ, eq. (2.3). The bare coupling λ there

gets replaced by the running coupling at the scale µ: λ→ 2π/ ln(µ/m).

To calculate the energy and the momentum of the giant magnon, we first compute the

effective Lagrangian:

TL = Seff [φ, σ] − Svac. (2.17)

The vacuum term subtracts the bulk energy and the momentum of the background state

without the soliton. It is a bit surprising that the vacuum carries not only the bulk energy

but also a finite amount of momentum. The non-zero momentum arises because the soliton

belongs to a sector with twisted boundary conditions. The phase of φ experiences a non-

zero increment on the soliton solution (2.14):

∆ϕ = −2 arctan
ν
√

1 − v2

µv
. (2.18)

8The classical approximation is accurate at asymptotically high densities when ln(µ/m) is large and

according to (2.8) the speed of sound approaches one. The limiting velocity thus is not visible in the

classical approximation.
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Consequently, the ground state must be position-dependent, in order to satisfy the bound-

ary conditions:

φvac =

(

1

4π
ln
µ

m

)1/2

e i∆ϕ
√

1−v2 x/L, (2.19)

where L is the size of the system. At L → ∞ the phase changes so slowly that it does

not contribute to the energy, but it still contributes a finite amount to the momentum

(the momentum density due to the phase rotation is O(1/L), while the energy density is

O(1/L2)). The details of the calculation can be found in appendix A. The result is

π

Nµ
L(v) = ln

µ

m
v arctan

√
1 − v2 sinα

v
−

√

1 − v2

[(

ln
µ

m
− 1

)

sinα+ α cosα
]

. (2.20)

The energy and momentum of the giant magnon can now be found from

p =
dL
dv

, ε = pv − L. (2.21)

The calculation is simplified by the fact that ∂L/∂α = 0 as long as (2.16) is satisfied, so

that dL/dv = ∂L/∂v:

π

Nµ
p = ln

µ

m
arctan

√
1 − v2 sinα

v
− v sinα√

1 − v2
(2.22)

π

Nµ
ε =

α secα− sinα√
1 − v2

. (2.23)

These two equations, together with (2.16), determine the dispersion relation ε = ε(p) of

the giant magnon in an implicit form.

Contrary to naive expectations, the momentum of the giant magnon decreases with

increasing velocity. Since α = 0 at v = cs, the magnon moving at the speed of sound has

zero momentum and zero energy. As the velocity approaches zero, the momentum reaches

its maximal value

pF =
Nµ

2
ln
µ

m
, (2.24)

which we will call the Fermi momentum for the reasons that will become clear in the next

section. The energy is a periodic function of the momentum with the period 2pF :

ε(p+ 2pF ) = ε(p), (2.25)

because of the ambiguity in choosing the branch of the arctangent in (2.22). The momentum

is thus naturally confined within a single ”Brillouin zone” −pF < p < pF .

The Fermi momentum and the Fermi energy grow logarithmically with µ. At very

large µ:

pF =
πNµ

λ(µ)
, εF ≈ 2Nµ

λ(µ)
(µ → ∞), (2.26)

where λ(µ) = 2π/ ln(µ/m) is the running coupling. The limit of large chemical potential

is the weak-coupling perturbative limit. The second term on the right-hand-side of (2.22)

can then be neglected. Also α approaches π/2, and the dispersion relation becomes

ε(p) ≈ εF sin
πp

2pF
(µ→ ∞). (2.27)

– 7 –
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Figure 2: The normalized dispersion relation of the giant magnon: the thick solid curve is the

sin law, eq. (2.27); the exact dispersion relation is practically indistinguishable from it already at

ln(µ/m) = 10 (dot-dashed green line). The thin solid line corresponds to ln(µ/m) = 1 and the

dashed blue line to ln(µ/m) = 0.01.

The periodicity in momentum is manifest here. In the classical approximation it has a nice

geometric interpretation [1]: The momentum of the classical giant magnon is the angle

subtended by the ends of the string on the sphere. It is interesting that the momentum gets

non-geometric quantum corrections already in the large-N approximation. The geometric

arctan term in (2.22)), of order 1/λ(µ), is shifted by a quantum term, of order one, which

has no apparent geometric meaning. Numerically, (2.27) is a good approximation in the

whole range of parameters, as can be seen from figure 2.

3. Bethe Ansatz

The exact quantum spectrum of the O(N) model consists of N massive particles in the

vector representation of O(N), whose S-matrix is known exactly at any N [8]. The ground

state at finite density is the Fermi sea of fundamental particles that occupy a finite rapidity

interval. The distribution of particles in the ground state at non-zero chemical potential

and zero temperature is given by the solution of the following integral equation [10, 11]:

ε(θ) −
∫ B

−B
dξ K(θ − ξ)ε(ξ) = m cosh θ − µ. (3.1)

The kernel K(θ) is the derivative of the scattering phase shift that can be extracted from

the exact S-matrix by taking the matrix element responsible for scattering of particles that

carry the background charge (at large N these are the quanta of the field φ in (2.5)). The

kernel is a rather involved function of the relative rapidity [11]:

K(θ) =
1

4π2

[

ψ

(

iθ

2π

)

− ψ

(

1

N − 2
+
iθ

2π

)

+ ψ

(

1

2
+

1

N − 2
+
iθ

2π

)

− ψ

(

1

2
+
iθ

2π

)

+ψ

(

− iθ

2π

)

− ψ

(

1

N − 2
− iθ

2π

)

+ ψ

(

1

2
+

1

N − 2
− iθ

2π

)

− ψ

(

1

2
− iθ

2π

)]

. (3.2)
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The equation (3.1) describes the filling of the Fermi sea in the thermodynamic limit. The

rapidity interval (−B,B) is occupied, while the outside of the interval is empty. The

equation describes not only the ground state, but also the spectrum of excitations.9 The

ground state energy is given by

E =
m

2π

∫ B

−B
dθ ε(θ) cosh θ. (3.3)

The function ε(θ), often called pseudo-energy, is the energy of a particle (for |θ| > B) or a

hole (for |θ| < B) with rapidity θ. Consequently, ε(θ) ≶ 0 at |θ| ≶ B. The condition that

ε(±B) = 0 unambiguously determines the Fermi rapidity B.

We will be mostly interested in the hole excitations. To find their dispersion relation

ε = ε(p) one has to solve an additional equation [38]:

ṕ(θ) −
∫ B

−B
dξ K(θ − ξ)ṕ(ξ) = −m cosh θ, (3.4)

which determines (the derivative of) the momentum. We are going to show that the hole

excitations are equivalent at N → ∞ to the solitons constructed in previous section. It is

instructive to consider first a much simpler case of the NLS model, where the holes in the

Fermi sea can be shown to describe quantum dark solitons.

3.1 Non-linear Schrödinger model

The integral equations for the NLS model (1.4) are [15, 39, 38]

ε(v) − g

π

∫ B

−B

du ε(u)

(v − u)2 + g2
= v2 − µ (3.5)

ṕ(v) − g

π

∫ B

−B

du ṕ(u)

(v − u)2 + g2
= −1. (3.6)

These equations are much simpler than the equations for the ground state of the O(N)

model, yet they are not solvable analytically. In [15] they were analyzed numerically.

Not surprisingly the equations considerably simplify in the Bogolyubov limit g → 0, such

that they admit an analytic solution. At first sight, the kernel simply disappears at g → 0,

because the scattering phase is then very small. Neglecting the kernel, however, would lead

to totally misleading results, because the scattering phase is small only for |v − u| ≫ g. If

|u− v| ∼ g the kernel on the contrary is very large: K ∼ 1/g. In fact, K(v) approximates

the delta-function at small g. But replacing K(v) by δ(v) would again be wrong,10 since

then the left-hand side of (3.5) completely disappears. The correct procedure consists in

9The equation (3.1) does not take into account the spin degrees of freedom. The nested Bethe equations,

which describe spins of the particles, are analyzed for the O(N) model at finite density in [26 – 28]. It is

interesting that the spin excitations have much in common with giant magnons [27].
10Such an approximation is correct at finite temperature or, more precisely at T ≫ µ3/2/g, and leads to

the standard Bose distribution [39].

– 9 –



J
H
E
P
0
5
(
2
0
0
8
)
0
4
7

keeping the next-to-leading O(g) term:11

g

v2 + g2
≈ π δ(v) + ℘

g

v2
(g → 0). (3.7)

The equation for pseudo-energy of holes then reduces to a singular integral equation:

g

π
−
∫ B

−B

du ε(u)

(v − u)2
= µ− v2 (|v| < B). (3.8)

Integrating once we get:

− g
π
−
∫ B

−B

du ε(u)

v − u
= µv − 1

3
v3, (3.9)

and, similarly,

− g
π
−
∫ B

−B

du ṕ(u)

v − u
= v. (3.10)

The energy and momentum of holes thus scale as 1/g. Once (3.9), (3.10) are solved, the

energy and momentum of particles can be found by simple integration:

ε(v) = v2 − µ+
g

π

∫ B

−B

du ε(u)

(v − u)2
(|v| > B)

ṕ = 1 − g

π

∫ B

−B

du ṕ(u)

(v − u)2 + g2
(|v| > B). (3.11)

The last terms in these equations cannot be neglected, since inside the Fermi interval ε(v)

and ṕ(v) are O(1/g).

The equation (3.9) is easily solvable. It also admits an interesting interpretation in

terms of random matrix theory, where such an equation arises as an equilibrium condition

for an eigenvalue distribution [40], which can be pictured as a macroscopically large number

of particles in an external potential Vext = µv2/2 − v4/6 subject to pairwise logarithmic

repulsion. The equation itself does not determine the Fermi velocity B. In matrix models

the normalization of the density −ε(v) uniquely determines B [40], but here the total

number of particles is not fixed and in order to find the Fermi velocity we need to minimize

the free energy:

E =
1

2π

∫ B

−B
dv ε(v). (3.12)

In the matrix-model language, E is the total number of particles (up to a sign since ε(v)

is negative inside the Fermi interval and thus E < 0). Therefore, we need to increase

the number of particles as much as possible in order to minimize E . This cannot be

done indefinitely because the potential Vext has the shape of an upside-down double well.

The repulsion between the particles counteracts the attraction towards the bottom of the

potential and tends to spread the particle’s distribution. Eventually, if the number of

particles is sufficiently large, the repulsion wins and the particles start to spill out of the

11This is only important for holes. For particles the delta-function is concentrated outside of the region

of integration.
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potential well. Mathematically this means that for sufficiently large B, eq. (3.9) has no

solutions with ε(v) < 0 within the Fermi interval (−B,B). The free energy is minimized

by the critical solution, when the particles are just starting to spill out of the potential

well. The critical point is characterized by the change in the edge behavior of the particle’s

density. Normally ε(v) ∼ (B − v)1/2, but at the critical point [40]

ε(v) ∼ (B − v)3/2. (3.13)

The criticality gives an extra condition that determines B. Imposing this condition on the

solution of (3.9), we find:

ε(v) =
1

3g

(

2µ− v2
)3/2

(3.14)

p(v) =
µ

g
arctan

√

2µ− v2

v
− v

2g

√

2µ− v2 (3.15)

E = −µ
2

8g
. (3.16)

These are, respectively, the energy of the dark soliton (1.3) [7], its momentum [7], and the

energy density of the ground state at 〈φ〉 =
√

µ/2g.

3.2 O(N) sigma model

The large-N limit of the Bethe Ansatz in the O(N) model is very similar to the weak

coupling limit for NLS. The large-N expansion of the kernel (3.2) starts with the delta-

function. Keeping the next-to-leading term, we get:

K(θ) ≈ δ(θ) +
1

N
℘

(

cosh θ

sinh2 θ
+

1

θ2

)

. (3.17)

Repeating the same steps as in the NLS case, we arrive at the singular integral equations

for the pseudo-energy of holes:

− 1

N
−
∫ B

−B
dξ ε(ξ)

(

1

θ − ξ
+

1

sinh(θ − ξ)

)

= µθ −m sinh θ, (3.18)

and for their momentum:

− 1

N
−
∫ B

−B
dξ ṕ(ξ)

(

1

θ − ξ
+

1

sinh(θ − ξ)

)

= m sinh θ. (3.19)

The singular integral equations with a combination of rational and hyperbolic kernels

are not solvable by standard techniques, but as we will argue, the solution is implicitly

given by the dispersion relation of the large-N giant magnon, eqs. (2.22), (2.23), (2.16). It

is straightforward to check this perturbatively in B and θ, which is effectively an expansion

in ln(µ/m). The tricky part is to find the relationship between the rapidity θ, that enters

the Bethe equations, and the velocity of the giant magnon, or the parameter α defined

in (2.16). To the first few orders in B,

α =

(

1

2
− B2

24
+
B4

144
+
B2θ2

360
+ . . .

)

√

B2 − θ2 . (3.20)
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Then

ε(θ) = −Nµ
12π

(

1 − 7B2

40
+
θ2

20
+

527B4

13440
− 3B2θ2

280
+

θ4

840
+ . . .

)

(

B2 − θ2
)3/2

p(θ) =
Nµ

4π

[(

B2 − B4

12
+

11B6

720
+ . . .

)

arccos
θ

B

−
(

θ − B2θ

6
+
θ3

12
+

11B4θ

320
− 7B2θ3

320
+

θ5

360
+ . . .

)

√

B2 − θ2

]

(3.21)

indeed solve (3.18) and (3.19) provided that

µ

m
= 1 +

B2

4
+
B4

96
+ . . . . (3.22)

This perturbative solution can be pushed to any reasonable order using Mathematica

and passes a number of consistency checks: The free energy computed from (3.3):

E =
Nµ2

8π

(

1 − B2

2
+
B4

24
− 11B6

1440
+ . . .

)

(3.23)

agrees with (2.7) upon identification (3.22).

Since ε(θ) ∼ (B− θ)3/2, we can differentiate (3.18) in m without the risk of producing

a singularity at the edge the Fermi interval. This gives the relationship:

ṕ = −m ∂ε

∂m
, (3.24)

which is also compatible with the solution (3.21).

The last equation can be used to calculate the exact Fermi rapidity. Near the Fermi

point θ = B, the pseudo-energy has the form ε(θ) = −P (m, θ)(B− θ)3/2, where P (m, θ) is

analytic at θ = B. Differentiating in m, we find from (3.24):

ṕ(θ) =
3

2
mP (m,B)

∂B

∂m
(B − θ)1/2 +O

(

(B − θ)3/2
)

,

or

p(θ) = −mP (m,B)
∂B

∂m
(B − θ)3/2 +O

(

(B − θ)5/2
)

.

The ratio ε/p at the Fermi point coincides with the speed of sound:

cs = − lim
θ→B

ε(θ)

p(θ)
= − 1

m ∂B
∂m

. (3.25)

Equating this to (2.8) gives a differential equation that determines B:

B =

√

ln
µ

m

(

ln
µ

m
+ 1

)

+ arcsinh

√

ln
µ

m
. (3.26)

Inverting this equation and expanding in B, we find (3.22).
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Λ

Vext

Figure 3: The effective potential for the integral equation (4.9): at h = 0.8hc (thick solid black

curve); at h = hc (dashed blue curve); and at h = 1.2hc (thin solid red curve).

4. Nearly isotropic XXZ spin chain

In this section we consider the XXZ spin chain in the magnetic field:

HXXZ = −
L

∑

l=1

(

σx
l σ

x
l+1 + σy

l σ
y
l+1

+ cos 2η σz
l σ

z
l+1 + hσz

l

)

. (4.1)

The ground state is described by the integral equations [38]

ε(λ) −
∫ B

−B
dν K(λ− ν)ε(ν) = ε0(λ) (4.2)

ṕ(λ) −
∫ B

−B
dν K(λ− ν)ṕ(ν) = −ṕ0(λ) (4.3)

E =
1

2π

∫ B

−B
dλ ṕ0(λ)ε(λ), (4.4)

where

K(λ) =
sin 4η

2π sinh(λ+ 2iη) sinh(λ− 2iη)
(4.5)

ε0(λ) = 2h− 2 sin2 2η

cosh(λ+ iη) cosh(λ− iη)
(4.6)

ṕ0(λ) =
sin 2η

cosh(λ+ iη) cosh(λ− iη)
. (4.7)

The limit of small anisotropy, η → 0, and small magnetic field h ∼ η2 can be interpreted

as the Bogolyubov limit. Indeed the small-η expansion of the kernel (4.5) starts with the

delta function:

K(λ) ≈ δ(λ) + ℘
2η

π sinh2 λ
(η → 0), (4.8)

and Bethe Ansatz reduces to singular integral equations:

−−
∫ B

−B

dν

π
ε(ν) coth(λ− ν) = 4η tanhλ− h

η
λ. (4.9)

−
∫ B

−B

dν

π
ṕ(ν) coth(λ− ν) = − tanhλ. (4.10)
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Figure 4: The dispersion relation for dark soliton in the XXZ spin chain for various values of

the magnetic field: hc/h = 100 (green dot-dashed line); hc/h = 2 (thin solid line) and hc/h = 1.01

(dashed blue line). It is accurately fitted by a simple dispersion law (2.27) shown in thin black line.

The effective ”matrix-model” potential in (4.9), Vext = 4η ln coshλ− hλ2/2η, has a stable

minimum only if h < 4η2. At the critical magnetic field hc = 4η2 the minimum disappears

(figure 3), the Fermi interval shrinks to a point, and for h > hc the equation(4.9) has no

solutions with negative pseudo-energy. The ground state at a supercritical magnetic field

is the completely empty ferromagnetic vacuum.

The coth kernel in (4.9) can be explicitly inverted. After straightforward albeit lengthy

calculations we find the solution to (4.9) at criticality:

ε(λ) = − 1

η coshλ

√

16η4 − h2 cosh2 λ+
h

2η
arccos

(

h2

8η4
cosh2 λ− 1

)

, (4.11)

where the Fermi point is given by

coshB =
4η2

h
.

One can verify that the pseudo-energy is negative everywhere in the interval (−B,B) and

behaves as |B ± λ|3/2 at the edges.

From (4.4) we get for the free energy density:

E = −(4η2 − h)2

8η2
= −(hc − h)2

2hc
. (4.12)

The momentum can be computed by noticing that

ṕ =
∂ (εη)

∂hc
, (4.13)

which gives:

p(λ) = arccos
hc tanhλ
√

h2
c − h2

− h

hc
arccos

h sinhλ
√

h2
c − h2

. (4.14)

The velocity of sound is

cs = − lim
λ→B

ε(λ)

p(λ)
=

√

h2
c − h2

η
. (4.15)
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The dispersion relation is shown in figure 4 and is well approximated by (2.27), especially

for small values of the magnetic field.

The energy of a hole (which can presumably be identified with some sort of a soliton)

is periodic in momentum with the period 2pF , where the Fermi momentum is given by

pF =
π

2

hc − h

hc
. (4.16)

For very small magnetic fields the period is just the inverse of the lattice spacing (= 1).

This is not surprising, since at zero magnetic field the hole excitations are magnons of

the XXZ spin chain. Periodicity of their momentum is a consequence of the underlying

lattice structure. However, the effective lattice spacing, aeff = hc/(hc − h), grows with the

magnetic field and becomes infinite at the critical point. The periodicity in momentum

should have some other origin near the critical point, not related to the lattice structure

of the spin chain.

5. Conclusions

The giant magnons in the O(N) sigma-model, as well as other dark soliton in integrable

theories, can be identified with the holes in the Fermi sea. The mysterious periodicity of

their momentum has a rather mundane explanation from this point of view — the period

is just the Fermi momentum doubled. It is not clear what implications can have such

an interpretation for the AdS/CFT correspondence. Unlike the string sigma-model, the

O(N) model is not conformal, it is a massive field theory with non-zero beta-function and

dimensional transmutation. In addition, the string sigma-model is coupled to 2d gravity

and one should fix the diffeomorphism gauge and solve or impose the Virasoro constraints.12

This eliminates longitudinal degrees of freedom, which in the O(N) model correspond to

the Bogolyubov sound waves. The giant magnons, however are transverse since they satisfy

the Virasoro constraints [1] at least classically.

In string theory, the finite charge density arises when a physical gauge condition of

light-cone type is imposed. The zero-density state and the spectrum of excitations around

it presumably correspond to the covariant, conformal-gauge description of the sigma-model

on AdS5×S5, which at the moment is not developed to the degree that one could formulate

Bethe Ansatz in the bare vacuum.
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A. Action of the giant magnon

Here we compute the action of the large-N giant magnon. All the ”classical” terms in the

effective action (2.5), those that depend on φ, do not contribute since upon integration by

parts they yield the equation of motion for φ, of which the giant magnon is a solution. The

easiest way to compute the ”quantum” part of the action is to differentiate it in ν:

∂S

∂ν
=
N

2

∫

d2x
∂σ

∂ν

(

1

λ
− 〈x| i

−∂2 − σ
|x〉

)

= TN
√

1 − v2

∫

dx
∂σ

∂ν

∫ +∞

−∞

dω

4π

(

R
[

x;ω2 +m2
]

−R
[

x;ω2 + σ
])

=
1

π

(

α tanα− ln
µ

m

)

,

where in the last line we used (2.11) and the explicit form of the solution (2.14). Requiring

that S(ν = 0) = 0 effectively subtracts the background energy (but not the background

momentum!), and yields:

S = − 1

π
TNµ

√

1 − v2

[(

ln
µ

m
− 1

)

sinα+ α cosα
]

.

The background action due to the phase rotation in (2.19) is

Svac =
1

2π
TNµv∆ϕ ln

µ

m
.

Subtracting Svac from S, and using (2.18), we get (2.20).
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